

Kronospan OSB FLLC 213105, Veinyanski s/s, 32 Mogilev region, Mogilev district, Republic of Belarus Tel.+375222492664,+375222492600 Fax+375222492699

DECLARATION OF PERFORMANCE No. OSB3-CPR-2015-11-01-6

1. Unique identification code of the product-type:

OSB 3/OSB3 ECO

2. Identification of the construction product:

OSB 3/OSB3 ECO 0765-CPR-1088

Identification code is printed on the each board and consists of production plant, product type, production date and time; and/or is printed on the label attached to the production boards packing.

3. Intended use or uses of the construction product:

For internal use as a structural component in humid conditions (OSB/3 acc. EN 300 is load-bearing boards for use in humid conditions)

4. Name and contact address of the manufacturer:

Kronospan OSB FLLC 213105, Veinyanski s/s, 32 Mogilev region, Mogilev district, Republic of Belarus www.kronospan.com.by

System of assessment and verification of constancy of performance:

System 2+

6. Harmonised standard:

EN 13986:2004 + A1:2015

7. The notified factory production control certification body:

Fraunhofer-Institute for Wood Research Wilhelm-Klauditz-Institute WKI Bienroder Weg 54 E, 38108 Braunschweig, Germany Notified body no. 0765

The notified factory production control certification body- Wilhelm-Klauditz-Institute WKI, Germany - performed initial inspection of the manufacturing plant and of factory production control and performs continuous surveillance, assessment and evaluation of factory production control under the system 2+ as described in harmonised standard EN 13986:2004+A1:2015.

Notified body issued the certificate of conformity of the factory production control No. 0765-CPR-1088

8. Declared performance

		Harmonised technical				
Specification						
	6 – 10 mm	> 10 - 18	> 18 - 25	> 25 - 30	specification	
Bending strength acc. EN	Major axis	22 MPa	20 MPa	18 MPa	16 MPa	
310	Minor axis	11 MPa	10 MPa	9 MPa	8 MPa	Technical class
Bending stiffness (Modulus	Major axis	3500 MPa	3500 MPa	3500 MPa	3500 MPa	OSB/3 acc. to EN 300
of elasticity) acc. EN 310	Minor axis	1400 MPa	1400 MPa	1400 MPa	1400 MPa	1

				Harmonised				
Essential characteristics				technical				
			6 – 10	> 10 - 18	> 18 - 25	> 25 - 30	specification	
1			2	3	4	5	6	
	Danding f	Major axis (0)	18,0	16,4	14,8	NPD		
	Bending f _m	Minor axis (90)	9,0	8,2	7,4	NPD	015	
	Total Control	Major axis (0)	9,9	9,4	9,0	NPD	A1:2015	
Strength acc. EN 12369-1 [N/mm²]	Tension ft	Minor axis (90)	7,2	7,0	6,8	NPD	4	
	Compression	Major axis (0)	15,9	15,4	14,8	NPD	3:200	
	. f _c	Minor axis (90)	12,9	12,7	12,4	NPD	3986	
		Panel shear f _v	6,8	6,8	6,8	NPD	EN 13986:2004	
		Planar shear f _r	1,0	1,0	1,0	NPD	1	

Declaration of performance acc. Regulation EU No. 305/2011 (CPR) No. OSB 3/OSB3 ECO -CPR-2015-11-01-6 - OSB 3/OSB3 ECO

MOE) acc. Minor axis (90) 3000 NPD		1		2	3	4	5		
Minor axis (90) 1980 NPD			Rending F	Major axis (0)	4930			NPD	
Note	Stiffness (MOE) acc. EN 12369-1	Dending L _m	Minor axis (90)	1980			NPD		
MOE) acc. Minor axis (90) 3000 NPD		Tonsion F	Major axis (0)	3800			NPD	7	
Compression Major axis (0) 3000 NPD		Tension Et	Minor axis (90)	3000			NPD		
Panel shear G _v 1080 NPD		Compression	Major axis (0)	3800			NPD	7	
Planar shear G _r NPD Planar shear Shear spoint load strength of Shear Shea	[IN/II	IIII-J	Ec	Minor axis (90)	3000			NPD	
Punching shear as point load strength and point add stiffness Racking resistance Input resistance Internal bond acc. EN 1319 Internal bond acc. EN 1319 Internal bond acc. EN 1319 Internal bond acc. EN 1317 Insut resistance Internal bond affer boil			•		1080			NPD	
NPD						50	NPD	1	
NPD	Pun load	Punching shear as point load strength and point load stiffness		NPD					
D-s2,d0	Rac	king resistar	nce		NPD				1
Vater vapour permeability NPD content of formaldehyde ISO 12460-5 Class E1 (≤ 0.3 mg/ 100g oven dry board) celease (content) of pentachlorophenol (PCP) <0,1 mg/kg	Impa	Impact resistance		NPD					
Class E1 (≤ 0.3 mg/ 100g oven dry board)	Rea	Reaction to fire acc. EN 13501-1		D-s2,d0					
Release (content) of pentachlorophenol (PCP) <0,1 mg/kg Irborne sound insulation acc. EN 13986 ONPD Ound absorption acc. EN 13986, Tab.10 Internal conductivity (density) acc. EN 12664 NPD Board thickness [mm] Find permeability NPD Board thickness [mm] Internal bond acc. EN 319 Swelling in thickness (24h) acc. EN 317 Moisture resistance (Internal bond after boil NPD 10 10 18 218-25 25-30 15 % 15 % 15 % 16 MPa 17 MPa 18 ANDA 18 A	Wate	Vater vapour permeability		NPD					
irborne sound insulation acc. EN 13986 Ound absorption acc. EN 13986, Tab.10 hermal conductivity (density) acc. EN 12664 MPD mbedment strength Ir permeability Board thickness [mm] 6 - 10 Internal bond acc. EN 319 O,34 MPa O,32 MPa O,30 MPa O,29 MPa Swelling in thickness (24h) acc. EN 317 Moisture resistance (Internal bond after boil O,15 MPa O,12 MPa O,12 MPa O,12 MPa O,13 MPa O,13 MPa O,13 MPa O,14 MPa O,15 MPa O,15 MPa O,15 MPa O,16 MPa O,17 MPa O,18 MPa	Conf	ontent of formaldehyde ISO 12460-5		Class E1 (≤ 0.3 mg/ 100g oven dry board)					
Ound absorption acc. EN 13986, Tab.10 NPD hermal conductivity (density) acc. EN 12664 NPD mbedment strength NPD ir permeability NPD Board thickness [mm] 6 - 10 > 10 - 18 > 18 - 25 > 25 - 30 Internal bond acc. EN 319 0,34 MPa 0,32 MPa 0,30 MPa 0,29 MPa Swelling in thickness (24h) acc. EN 317 15 % 15 % 15 % Moisture resistance (Internal bond after boil 0.15 MPa 0.42 MPa 0.42 MPa	Rele	Release (content) of pentachlorophenol (PCP)		<0,1 mg/kg					
hermal conductivity (density) acc. EN 12664 mbedment strength NPD NPD Board thickness [mm] 6 - 10 > 10 - 18 > 18 - 25 > 25 - 30 Internal bond acc. EN 319 0,34 MPa 0,32 MPa 0,30 MPa 0,29 MPa Swelling in thickness (24h) acc. EN 317 15 % 15 % 15 % 15 % Moisture resistance (Internal bond after boil 0.15 MPa 0.42 MPa 0.42 MPa 0.42 MPa 0.42 MPa 0.43 M	Airbo	Airborne sound insulation acc. EN 13986		NPD					
NPD	Sour	Sound absorption acc. EN 13986, Tab.10		NPD					
NPD	Ther								
Board thickness [mm] 6 - 10 > 10 - 18 > 18 - 25 > 25 - 30		Embedment strength							
Internal bond acc. EN 319 0,34 MPa 0,32 MPa 0,30 MPa 0,29 MPa Swelling in thickness (24h) acc. EN 317 15 % 15 % 15 % 15 % Moisture resistance (Internal bond after boil 0.15 MPa 0.13	Air p	Air permeability		NPD				-	
Moisture resistance (Internal bond after boil 0.15 MPc 0.12 MPc 0.12 MPc 0.12 MPc			Board	thickness [mm]	6 – 10	> 10 - 18	> 18 - 25	> 25 - 30	
Moisture resistance (Internal bond after boil 0.15 MPc 0.12 MPc 0.12 MPc 0.12 MPc	III		Internal b	ond acc. EN 319	0,34 MPa	0,32 MPa	0,30 MPa	0,29 MPa	
Moisture resistance (Internal bond after boil 0.15 MPc 0.12 MPc 0.12 MPc 0.12 MPc	urabi	Swe	elling in thickness (2	24h) acc. EN 317	15 %	15 %	15 %	15 %	1
	D	Moistur			0,15 MPa	0,13 MPa	0,12 MPa	0,06 MPa	

9. The performance of the product identified in points 1 and 2 is in conformity with the declared performance in point 8.

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 4.

Signed for and on behalf of the manufacturer by:

Mogilev, 01.09.2020

....... Aliaksandr Ulitsin Production Manager

Jan Erdman Commercial Manager